1.急求一篇初中论文 生活中的数学 三千字左右

2.请大家帮我提供3~5个关于数学的小故事

3.全球气候变暖的背景

4.关于数学的幽默小故事大全

5.数学与人类时空观

6.数学论文怎么写六年级

急求一篇初中论文 生活中的数学 三千字左右

关于天气的数学论文_关于天气的数学论文怎么写

浅谈生活中的数学0、

摘要: 本文通过对生活中的数学问题进行讨论,从日常小事说起,使大家对生活中的数学有一个初步了解,并让我们进一步体味到数学在生活中的重要性。只有我们能够意识到数学存在于现实生活之中,并被广泛应用于现实世界,才能够切实体会到数学的应用价值,当面对实际问题时,才能主动尝试着从数学的角度运用所学知识和方法去寻求解决问题的策略。由于生活中的数学乐趣,才使我们体会到数学中存在着无限的交响乐,存在着优美的诗。

关键词:使用频率、生活、标征量、乐趣

1、

引言:

“卖西红柿……,一元钱三斤。”这一句简单的叫卖,就有数学问题。也就是说,在我们生活的周围有很多的数学问题,这些数学问题、现象贯穿于生活的方方面面,不仅有一般生活中的常识,也有生产实践中的不在意,还有生活中的游戏、乐趣等等。

总的来说,生活中的数学分为四个方面,一是日常生活中的数学;二是生活与数学的关系;三是生活中的数学乐趣;四是数学对生活的影响。通过这四个方面的论述,可以使我们对生活中的数学有一个比较深层次的了解,从而使我们更加注重生活中的数学。

2、

日常生活中的数学

2.1一日生活中伴随着数学

早上一起来,首先是对一天的工作进行一个比较简单的,一天中要干哪些工作,需要什么时间完成,这一天的预算支出、收入各多少;有了一个初步的打算以后,开始对一天的工作进行实施;一天的工作进行中伴随着各种各样的计算、预算即数学。一天的工作结束后,接下来的是对一天的工作进行一个小结,小结是通过一个一个的数算进行的,运算的结果是一个个比较直观的数字。

从以上的例子中可以比较清楚、明显的看出来,一日生活中的每一件事情都伴随着数字问题,也就是说数学问题伴随在生活中的每一件小事情中。

2.2日常生活中数学的使用频率高

社会的发展带来社会生活方式、内容以及节奏的变化,这样的变化与数学有着怎样的关系,统计结果表明,与人民日常生活联系密切的数学信息按出现频率排列,主要包括:数(大数)、百分数、分数、比例、图形及图表、统计、数学术语这几个方面。这些内容所出现的不同领域包括:政治、军事、经济、科技、教育、文化、卫生、体育、生活、金融保险、广告等。比如,在生活中,一个人如果在刷牙时不关水龙头,那么刷一次牙要浪费7杯水,每班按40人计算一天会浪费多少水?全国一天共浪费多少水?这个数一定是一个很大的数,我们在利用大数的同时也增强了节水的意识。

根据统计结果表明,可以得出以下结论:

(1)数学的定量化特征越来越多地表现在人们的日常生活中。大数和百分数以相当高的比例出现在经济、科技、政治、生活的新闻及广告中,这说明在以商品经济为主和科技日益发展的社会中,信息的传递和交流更多的好似定量的,而不是定性的。

(2)图形图表,尤其是各种各样的统计图、统计表(如直方图、扇形统计图以及一些形象的统计图)出现较多,它们以清楚、明了、信息量大、对比度强等特点出现报刊中。从这些频频出现的直方图、扇形统计图、数据统计表中,我们看到,为了了解信息、看懂报纸,统计的基本知识和方法已必不可少。

(3)与生活相关的报道及广告中的数学内容也很丰富。在广告中,这些内容多与保险、房地产、储蓄、旅游等行业有关,如方位图、直方图、数学术语、公式等。随着上述行业的不断发展,不难预计。在未来的社会中,数学必将与经济和人们的日常生活发生越来越密切的关系。而就今天的日常生活来说,一件工程的预算、生活中日用品的买卖、人与人之间的对话、一天中时间的安排、一个阶段中各种事务的安排、一天中的一个小结、一个阶段中各种事务的处理情况、工作程序等等,数学在其中的使用已是非常广泛,从而可以说明数学的使用频率已相当高。 3、生活与数学的关系

数学与人们的生活有着非常密切的关系。日常生活中人们离不开数学,购物、估计和计算时间、确定位置等都与数学有关。可以说,数学在人们的生活中是无处不在的,数学是日常生活中必不可少的工具。无论人们从事什么职业,都不同程度地会用到数学的知识与技能以及数学的思考方法。特别是随着计算机的普及与发展,这种需要是与日俱增。而且,数学是和语言一样的一种工具,具有国际通用性。可以说,自然界中的数学不胜枚举,如蜜蜂营造的蜂房,它的表面就是由奇妙的数学图形——正六边形构成的,这种蜂房消耗最少的材料和时间;我们邹梓人行道上,常见到这样的图案,它们分别是同样大小的正方形或正六边形的地砖铺成的,这样形状的地砖能铺成平整无孔隙的地面。这里面竟有一个节约的数学道理在里面呢?再比如,100户人家要安装电话,事实上并不需要1000条电话线路,只要允许有一些时间占线,就能大大节约安装成本,这正体现了数理统计的作用。因此,生活与数学是分不开的,生活中有数学,数学是生活的缩影。

3.1生活是以数学做标征量

在一年要结束的时候,商人在谈论中说我这一年的收入是多少多少,与去年相比怎么样;农民也在谈论这一年中收入了多少多少,有几项收入如何如何,收入了多少粮食;工人也在谈论我这一年的收入与支出是否相当,有多少存款;军人谈论这一年中训练成绩如何,提高了多少成绩;而学生学习成绩的提供啊则是对一位教师一年来辛苦工作的最好回报;单位也在做这样一个一个的总结。

一年的结束是这样的,下一年的开始同样也要有一个预算;一天、一个月、一个季度、一个阶段人们都在做同样的事情;一个人、一个家庭、一个单位、一个组织、一个国家等等,都在用数学的方法对他们在不同时间、地点、空间、人员、事务等等上做一定的运算后,得出一个直观的数字标示量,作为一个目标、结论、预计、程度等。

综上所述,数学确实是生活中的一个标征量。 3.2数学催促着生活水平的提高

数学推动了数字化社会的发展,推动了科学的纵深发展,它被广泛应用于现实世界的各个领域。无论是我们日常生活的天气预报、储蓄、市场调查与预测,还是基因图谱的分析、工程设计、信息编码、质量监测等等,都离不开数学的支持。在努力把科技成果转化为生产力的今天,主动寻求新知识的实际背景,主动寻求知识的应用领域,开辟出更广阔的应用空间,从而催促着我们生活水平的提高。

生活中总有一些数学问题推动着人们的大脑和行动。“本世纪中叶我国赶上中等发达国家水平。”这就催促着我们的大脑在想,我们怎样去发展经济才能在本世纪中叶赶上中等发达国家的人均收入,从而人们在不停地思考我国的经济发展道路,一旦有了发展的新思路,人们就要立即行动起来,为我国的经济发展开启一条新道路,从而推动经济的发展,使人们的生活水平不断提高。

另外,在我们进行的各项活动中,要做成一件事情,往往要受到各种主客观条件的限制和制约,一个自然的想法是:如何在现有条件下以最小的代价获得最佳效果。即怎样才能达到“最近、最省时间、最短距离、最佳效益”等优化问题,相应的数学方法就是优化方法。如果优化中的主、客观条件和要实现的目标都可以表现为线性函数,那么对应的优化问题就称为线性规划问题。这类问题虽然简单,但却是各项经济活动中最为常见的,经济、工业、国防、城市规划及交通运输等领域中都有大量的线性规划问题。在我们的日常生活中也总是想法设法以最优的价格来获得最佳产品,以最小的代价获得最高利润,想办法如何使有限的生产资料得到最充分的利用,如何选择出可行的最佳路线,在课堂上以有限的时间获得最佳的课堂效果;等等。

再如:到北京四个人的车票要多少钱?乘坐什么样的交通工具最省钱?买一支牙膏给十元钱应找回多少钱?五点出门六点一刻回来用了多少分钟?等等,这些问题都在推动正人们去思考,应用数学的方法分区思考,推动人们去行动,增强生活观,影响着人们的日常生活,所以,我们要与数学交朋友,数学是我们劳动和学习必不可少的工具,能够帮助我们处理各种数据,进行计算和证明以及推理。 4、生活中的数学乐趣多

现在的生活,数学游戏多多,比如说小朋友在打时快算二十四、数学填框游戏,就连赵本山的小品中也有很多这样的数学游戏。如“树上七只猴,地上一只猴,一共几只猴。”等等生活中的例子。这些游戏构成了我们生活中五彩缤纷的画卷。

下面我将再通过几个生活中的实例来说明生活数学的乐趣:(1)在一张纸的中心滴一滴墨水,沿纸的中部将纸对折、压平,然后打开看,位于折痕两侧的墨迹图案有什么特征?肯定是对称的,这里面体现了轴对称的数学知识与乐趣。(2)打“斯诺克”台球,当“主球”与“目标球”之间有障碍时,为了击中目标球,主球应先击打台球桌的边,设法反弹后再击中目标球。如下图所示,

主球A击打桌边的点B处,反弹后再击中目标球C。(根据入射角等于反射角的原理)图中的∠ABD=∠EBC,目标球从A出发经过点B到点C,即相当于从点A′出发直接击打目标球C。这里,就有图形的轴对称变换的原理。(3)有两杯水都是100克,其中一杯放入糖30克,另一杯放入糖25克,哪杯水更甜些?当然是第一杯更甜些。若两杯水分别是40克和45克,第一杯放入30克糖,第二杯放入35克糖,结果哪杯更甜些?需要运用百分数的知识来比较。(4)当你乘车沿一条平坦的路向前行驶时,你前方的那些高大建筑看起来好像“沉”到了位于它们前面那些矮一些的建筑物后面去了,而当你经过它们之后再回头望,那些“沉”下去的建筑又逐渐“冒”了出来。

总之,生活中的数学乐趣多,可以说无处不在。

5、数学对生活的影响是比较大的

数学对生活的影响说明了数学在生活中的地位和作用。衣、食、住、行是社会生活的基础,过去人们追求的是吃饱、穿暖、实现小康水平。随着生活水平的提高,人们追求的目标是均衡的营养、设计新颖的服装、土地的合理利用、舒适的房屋等等。事实上,在日常生活中,就学、就业、住房、医疗、退休、养老等模式,都在发生变化,变得可选择性越来越强,越来越需要减少依赖,增强自主,需要百姓运用自己的头脑分析批判,作出决策。

在众多的选择面前,有人如鱼得水,有人无所适从。无论你是否习惯,是否能够接受,“降水概率”已经赫然于电视和报端。不久的将来,新闻报道中每一条消息旁都会注明“真实概率”;电视节目的预告中,每个节目旁都会写上“可视度概率”。另外,还有西瓜成熟率、火车正点概率、药效概率、广告可靠概率等。总之,世间万物本来如此,我们只是借助于数学帮助恢复其本来面目。生活中如果没有了数学,不能进行定价,我们的买卖就不能进行下去,经济活动也就无法开展;没有了数学,不能进行科学计算,我们的科学研究也就无法进行;没有了数学,不能进行计数,我们基本的农业生产也会变得混乱不堪;没有了数学,就连最起码的日常生活也无法进行下去,因为没有了数学,我们就不可能进行日常生活中的等价交换。

从上所述,数学严重影响着我们的生活,是生活中的重要条件。只要我们善于适当地把数学应用于现实生活解决实际问题,才能更好地体现数学服务于生活。正是由于善于观察生活中的实际问题和勤于思考,牛顿发现了万有引力,欧拉通过数学抽象成功地解决了“哥尼斯堡七桥问题”,又通过“哥尼斯堡七桥问题”创立了图论与线性规划两门学科。只要我们善于观察、勤于思考,现实生活中出现的许多新问题会不断得到解决,生活中的数学语言也才能通过各种途径为各行各业的人传递大量的信息。

6、总结

总上所述,生活中的数学不仅仅是生活中的一种工具,同时也是生活的必需品,而且影响着人们的生活。生活中的数学是人们追求的一个标征量,也是生活中的乐趣。因此,我们不可忽视生活中的数学,要重视它并最大限度地开发、利用它。

请大家帮我提供3~5个关于数学的小故事

1、蝴蝶效应

气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?」论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。Lorenz为何要写这篇论文呢?

这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。

这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果。当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。在一小时后,结果出来了,不过令他目瞪口呆。结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。所以长期的准确预测天气是不可能的。

参考资料:

阿草的葫芦(下册)——远哲科学教育基金会

2、动物中的数学“天才”

蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。

丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?

蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。

冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。

真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。(生活时报)

3、麦比乌斯带

每一张纸均有两个面和封闭曲线状的棱(edge),如果有一张纸它有一条棱而且只有一个面,使得一只蚂蚁能够不越过棱就可从纸上的任何一点到达其他任何一点,这有可能吗?事实上是可能的只要把一条纸带半扭转,再把两头贴上就行了。这是德国数学家麦比乌斯(M?bius.A.F 1790-1868)在1858年发现的,自此以后那种带就以他的名字命名,称为麦比乌斯带。有了这种玩具使得一支数学的分支拓朴学得以蓬勃发展。

4、数学家的遗嘱

阿拉伯数学家花拉子密的遗嘱,当时他的妻子正怀着他们的第一胎小孩。“如果我亲爱的妻子帮我生个儿子,我的儿子将继承三分之二的遗产,我的妻子将得三分之一;如果是生女的,我的妻子将继承三分之二 的遗产,我的女儿将得三分之一。”。

而不幸的是,在孩子出生前,这位数学家就去世了。之后,发生的事更困扰大家,他的妻子帮他生了一对龙凤胎,而问题就发生在他的遗嘱内容。

如何遵照数学家的遗嘱,将遗产分给他的妻子、儿子、女儿呢?

5、火柴游戏

一个最普通的火柴游戏就是两人一起玩,先置若干支火柴於桌上,两人轮流取,每次所取的数目可先作一些限制,规定取走最后一根火柴者获胜。

规则一:若限制每次所取的火柴数目最少一根,最多三根,则如何玩才可致胜?

例如:桌面上有n=15根火柴,甲、乙两人轮流取,甲先取,则甲应如何取才能致胜?

为了要取得最后一根,甲必须最后留下零根火柴给乙,故在最后一步之前的轮取中,甲不能留下1根或2根或3根,否则乙就可以全部取走而获胜。如果留下4根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的火柴而赢了游戏。同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取后留下4根火柴,最后也一定是甲获胜。由上之分析可知,甲只要使得桌面上的火柴数为4、8、12、16...等让乙去取,则甲必稳操胜券。因此若原先桌面上的火柴数为15,则甲应取3根。(∵15-3=12)若原先桌面上的火柴数为18呢?则甲应先取2根(∵18-2=16)。

规则二:限制每次所取的火柴数目为1至4根,则又如何致胜?

原则:若甲先取,则甲每次取时,须留5的倍数的火柴给乙去取。

通则:有n支火柴,每次可取1至k支,则甲每次取后所留的火柴数目必须为k+1之倍数。

规则三:限制每次所取的火柴数目不是连续的数,而是一些不连续的数,如1、3、7,则又该如何玩法?

分析:1、3、7均为奇数,由於目标为0,而0为偶数,所以先取者甲,须使桌上的火柴数为偶数,因为乙在偶数的火柴数中,不可能再取去1、3、7根火柴后获得0,但使如此也不能保证甲必赢,因为甲对於火柴数的奇或偶,也是无法依照己意来控制的。因为〔偶-奇=奇,奇-奇=偶〕,所以每次取后,桌上的火柴数奇偶相反。若开始时是奇数,如17,甲先取,则不论甲取多少(1或3或7),剩下的便是偶数,乙随后又把偶数变成奇数,甲又把奇数回覆到偶数,最后甲是注定为赢家;反之,若开始时为偶数,则甲注定会输。

通则:开局是奇数,先取者必胜;反之,若开局为偶数,则先取者会输。

规则四:限制每次所取的火柴数是1或4(一个奇数,一个偶数)。

分析:如前规则二,若甲先取,则甲每次取时留5的倍数的火柴给乙去取,则甲必胜。此外,若甲留给乙取的火柴数为5之倍数加2时,甲也可赢得游戏,因为玩的时候可以控制每轮所取的火柴数为5(若乙取1,甲则取4;若乙取4,则甲取1),最后剩下2根,那时乙只能取1,甲便可取得最后一根而获胜。

通则:若甲先取,则甲每次取时所留火柴数为5之倍数或5的倍数加2。 6、韩信点兵

韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。刘邦茫然而不知其数。

我们先考虑下列的问题:设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?

首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。

中国有一本数学古书「孙子算经」也有类似的问题:「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?」

答曰:「二十三」

术曰:「三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。」

孙子算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理(Chinese Remainder Theorem)在近代抽象代数学中占有一席非常重要的地位。

古今数学名题 阿溪里斯能追上乌龟吗

阿溪里斯是古希腊传说中善走的神,现在让他和乌龟赛跑。定他的速度为乌龟的10倍。乌龟先出发,走了1/10公里。阿溪里斯开始追赶它,当阿溪里斯走完这1/10公里时,乌龟又向前走了1/100公里;阿溪里斯再走完这1/100公里时,乌龟又向前走了1/1000公里;……。阿溪里斯的速度再快,走过一段路总得花一段时间,乌龟速度再慢,在这一段时间里也总要再向前走一段路程。这样说来,阿溪里斯是永远追不上乌龟了。

古今数学名题 绳子问题

如果有二条绳子,任一条皆可从头烧到尾且耗时一小时(绳子为非均质材质),请想出以这二条绳子及一打火机计算出四十五分钟是多长?

高 斯

高斯(Gauss 1777~1855)生於Brunswick,位於现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。

高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终於发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。

老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什麽东西可以教高斯了。

美国的着名数学家贝尔(E.T.Bell),在他着的《数学工作者》(Men of Mathematics) 一书里曾经这样批评高斯:在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔(Abel)和雅可比(Jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。

全球气候变暖的背景

1981~1990年全球平均气温比100年前上升了0.48℃。导致全球变暖的主要原因是人类在近一个世纪以来大量使用矿物燃料(如煤、石油等),排放出大量的CO2等多种温室气体。这些温室气体导致全球气候变暖。在20世纪全世界平均温度约攀升0.6摄氏度。北半球春天冰雪解冻期比150年前提前了9天,而秋天霜冻开始时间却晚了约10天。20世纪90年代是自19世纪中期开始温度记录工作以来最温暖的十年,在记录上最热的几年依次是:1998年,2002年,2003年,2001年和19年。

变暖后联合国的措施

为阻止全球变暖趋势,1992年联合国专门制订了《联合国气候变化框架公约》,该公约于同年在巴西城市里约热内卢签署生效。依据该公约,发达国家同意在2000年之前将他们释放到大气层的二氧化碳及其它“温室气体”的排放量降至1990年时的水平。另外,这些每年二氧化碳合计排放量占到全球二氧化碳总排放量60%的国家还同意将相关技术和信息转让给发展中国家。发达国家转让给发展中国家的这些技术和信息有助于后者积极应对气候变化带来的各种挑战。截止2004年5月,已有189个国家正式批准了上述公约。

变暖后的危害

变暖的危害从自然灾害到生物链断裂,涉及人类生存的各个方面。

历史温度

在人类近代历史中才有一些温度记录。这些记录的来源不同,精确度和可靠性也参差不齐。在1850年前的一两千年中,虽然曾经出现中世纪温暖时期与小冰河时期,但是大众一直相信全球温度是相对稳定的。在1860年才有类似全球温度的仪器记录,当年的记录很少考虑的城市热岛效应的影响。但是根据仪器记录,1860~1900年期间,全球陆地与海洋的平均温度上升了0.75℃;自19年开始,陆地温度上升幅度约为海洋温度上升幅度的一倍(陆地温度上升了0.25℃,而海洋温度上升了0.13℃)。同年,人类开始利用卫星温度测量来量度对流层的温度,发现对流层的温度每十年上升0.12℃至0.22℃。2000年之后,多方组织对过去1000年的全球温度进行了研究,对这些研究成果进行对比和讨论后发现,自19年开始的气候转变的过程是十分清晰。此外,其他的研究报告显示,从20世纪初开始至今,地球表面的平均温度增加了约1.1f(0.6℃);在过去的40年中,平均气温上升约0.5f(0.2-0.3℃);在20世纪,全球变暖的程度是更超过在过去400-600年中任何一段时间.。

美国国家航空航天局戈达德太空研究所的研究报告显示,自19世纪广泛地用仪器测量并记录温度开始,2005年是最温暖的年份,比1998年的温度记录还要高。世界气象组织和英国气候研究单位也有类似的估计,相反的是,他们测量显示,2005年是仅次于1998年第二温暖的年份。

在2000年后,各地的高温记录经常被打破。譬如:2003年8月11日,瑞士格罗诺镇录得41.5℃,破139年来的记录。同年,8月10日,英国伦敦的温度达到38.1℃,破了1990年的记录。同期,巴黎南部晚上测得最低温度为25.5℃,破了1873年以来的记录。8月7日夜间,德国也打破了百年最高气温记录。在2003年夏天,台北、上海、杭州、武汉、福州都破了当地高温记录,而中国浙江省更快速地屡破高温记录,67个气象站中40个都刷新记录。2004年7月,广州的罕见高温打破了53年来的记录。2005年7月,美国有两百个城市都创下历史性高温记录。2006年8月16日,重庆最高气温高达43℃。台湾宜兰在2006年7月8日温度高达38.8℃,破了19年的记录。2006年11月11日是香港整个11月最热的一日,最高气温高达29.2℃,比1961年至1990年的平均最高温26.1℃还要高。

研究预测

据俄罗斯《独立报》2013年7月31日消息,《美国科学院院报》(PNAS)发表文章称,随着海平面上升,美国约1400个城市至2100年或将被淹没。据报道,该结论由Climate Central独立研究中心的本杰明·施特劳斯研究所得。他的研究报告称,至2100年,全球气候变暖会导致海平面上升127厘米,届时,美国约1400个城市将面临被淹没的威胁。

在这份研究报告中,施特劳斯特别关注了美国佛罗里达州和路易斯安那州。他认为,佛罗里达州150个城市的270万人,以及路易斯安那州114个城市中的120万人都将处于极大的威胁中。此外,面临淹没威胁的地区还有新泽西州、加利福尼亚州和北卡罗来纳州等。

根据《新科学家》杂志上的研究报告,“浮质法”能够让抵达地面的阳光减少五分之一。不过,这种方式也会降低天空的蓝度,从我们熟悉的蔚蓝色变成白色。美国加利福尼亚州卡内基科学研究所的本-克拉维茨表示,人类可以通过实施地球工程,解决面临的环境问题。然而,这种做法也会产生副作用。他指出,喷射到空中的颗粒直径在0.1到0.9微米之一,负责将阳光反射回太空。不过,由于太空中存在这些颗粒,天空的颜色也会从蓝色变成白色。

美国科学家研究发现,古代农业活动曾使世界避免进入新冰川期。这说明,人类活动引起全球气候变暖可能持续了数千年。研究人员说,砍倒大树并开垦第一片田地的史前农民使大气中甲烷和CO2等温室气体含量发生了很大变化,全球气温因此逐渐回升。

美国弗吉尼亚大学教授拉迪曼说:“要不是早期农业带来的温室气体,地球气温很可能还是冰川时期的气温。”拉迪曼承认,研究结果非常容易引起争议。

美国国家大气研究中心17日说,科学家通过两项最新研究预测,即使全世界温室气体的排放量稳定在2000年的水平,本世纪全球变暖和海平面上升的趋势已经不可逆转。

国家大气研究中心的科学家在18日出版的《科学》杂志上连续发表两篇论文,从不同角度预测了全球气候变化的趋势。他们的成果将由联合国下属的间气候变化专家委员会评估,收录到2007年公布的下一份全球气候变化报告中。

在第一篇论文中,国家大气研究中心的魏格雷提出了一个较简单的数学模型来理解全球气候变化。他认为,由于海洋存在“热惯性”,对温室气体等外界影响的反应有所滞后,本世纪全球变暖的趋势只不过是以前排放温室气体的后果。

据预测,到2400年,已存在于大气中的温室气体成分,将至少使全球平均气温升高1℃;不断新排放的温室气体,又将导致全球平均气温额外升高2至6℃。这两个因素还会分别引起海平面每世纪上升10厘米和25厘米。要遏制气候变暖的趋势,就必须将全球温室气体排放控制在极其低的水平,即使这样海平面上升的趋势恐怕也难以避免,每世纪10厘米的上升速度可能是最乐观的预测。

由杰拉尔德·梅尔等人发表的第二篇论文则预测,由于“热惯性”的存在,即使本世纪中人类不向大气排放任何温室气体,到2100年全球平均气温也将至少升高0.5℃,海平面将上升11厘米以上,其中海平面上升的速度比科学家早先的预测值高了一倍多。梅尔对此解释说,这是因为以前的预测没有考虑到冰川融化等的影响。

梅尔的研究小组用两套数学模型,借助超级计算机模拟了全球温室气体排放量分别为低、中、高时的气候和海平面变化情况。

中国科学家的最新研究表明,地球表面植被覆盖不断减少与全球气候变暖两者有着必然的内在联系,首先对这个更为科学的数学模型作一简单介绍。

首先必须介绍几个简单的物理常识:

一,力学

二,焦耳定律

英国物理学家焦耳做了大量的实验于1840年最先精确地确定电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻成正比.跟通电时间成正比,这个规律叫做焦耳定律。焦耳定律可以用公式Q=I^2Rt表示

三,光电效应

光照射到某些物质上,引起物质的电性质发生变化,也就是光能量转换成电能。这类光致电变的现象被人们统称为光电效应(Photoelectric effect)。光电效应分为光电子发射、光电导效应和光生伏特效应。前一种现象发生在物体表面,又称外光电效应。后两种现象发生在物体内部,称为内光电效应。赫兹于1887年发现光电效应,爱因斯坦第一个成功的解释了光电效应。

四,尖端放电效应

五,电磁感应定律

六,场分布概念

总之,其实就是力、热、光、电四大力学,近代物理等一些理论,还要知道高等数学、地质构造板块运动等方面的一些知识。

有了这些知识之后可以理解下面的话

⑴大前提

地球在围绕太阳公转地同时进行自转,黄赤夹角是23度26分,在太阳辐射的照射下,由于光电效应,地表物体的电子被不断电离,形成的负离子随着热空气上升,使得地表带上正电荷,带电量与太阳辐射强度以及时间成线性关系,也就是说,太阳在不断为地表充正电荷,负电荷则上升至高空,整个地表与大气层构成一个超级巨大电容器。

⑵电荷在地表将如何分布?

由于海水是良导体,相比之下,大陆板块是不良导体,因此电荷在海平面能够迅速流动,而在大陆上则流动相对缓慢一些,由于尖端效应,电荷将向地球表面海拔较高的地区不断聚集,因此,海平面总的电流效应为零,电流效应将主要体现在大陆板块之中。这样就可根据地球板块分布、地表详细地形地貌、地球自转情况以及太阳辐射角度等基本参数建立一个地球的电流及电荷模型,可计算出分布情况,理论上能够得出与实际非常吻合的结果,视参数选择的精确度以及计算机的数据处理能力。

⑶所带来的电流场分布情况以及地磁场产生机理

当地球一侧面对太阳时,根据此理论模型,若外界太阳辐射全部屏蔽,则地球表面的电荷运动趋势是不断向尖端地带运动,产生电流场1,称之为磁场1(这个电流场与地表大陆分布情况以及大陆海拔情况有关,且电流各向同性,所以其总体效应为零,但可在局部地区对地磁场的分布造成影响);与此同时地表在不断地放电,因此在太阳辐射存在的情况下,地球正对太阳一面的电荷分布(主要分布在大陆上)是东面电荷最多,西面电荷最少(由于地球自西向东自转),因此在面对太阳一侧形成了自东向西的电流,称之为电流分布2,这个电流产生一个磁场,称之为磁场2,且可知面对太阳一侧,磁场较强,背对太阳一侧磁场发散;此外地表尖端地带聚集的正电荷随着地球自转所产生的磁场大小可称为磁场3;而地表上空的负电荷也在随着地球自转产生电流场4,对应一个磁场,可称为磁场4,由于正负电荷总量相等,因此磁场3和磁场4总体效应为零。综上所述,磁场2是地磁场的主要来源,具体数据则需要根据太阳辐射情况、大陆板块分布情况等详细数据建立模型计算。

⑷地球如何实现电荷平衡

可将地球视为一个超级电容器,在太阳为这个超级电容器以1800A持续充电的同时,也在进行着1800A的放电(见费曼物理学讲义闪电平均电流1800A,可推知充电电流是1800A),这个放电,就是闪电,所以,地球上当今20世纪闪电的平均电流就是1800A,闪电的电流则是自地表向高空,自下而上。闪电需要将空气击穿,因此多发生在空气湿度较大的地带,如阴雨大风天气、以及较高海拔火山口地带等。地球的表面电场强度自下而上超过100V/m(见费曼物理学讲义),电场分布应该是,地表直到电离层,因此,可以推算出地球这个超级电容器蕴藏着很大的能量。既然电荷量很大,为什么我们没有感觉?因为我们所处的位置,在同一电位上,而干燥的空气又是极佳的绝缘体,所以没有什么感觉。

⑸若地表植被减少会出现什么问题?

由以上几点可知,地球大电容是一个平衡系统。长期以来,地球上生态环境,植被覆盖情况是相对稳定的,因此,地表的含水量相对稳定,因此,地表的电导率相对稳定。按照此理论,当地表植被减少时,地表的电导率下降,即表现为电阻加大,也就是说,地球电容器的内阻增大,而充电功率即太阳辐射情况相对较稳定,根据焦耳定律,这在一定程度上使得地表的发热量增大,一定程度上促进了全球变暖。

⑹若地表植被大量消失或者出现大范围干旱将出现什么情况?

如方圆上千公里植被大量消失或者干旱,造成地表大片地区成为绝缘体,使得无法按照原来的电流场进行流动而大量电荷聚集在地表。由于电荷之间的库仑力,直观上表现为土地表面形成裂口,宏观上则表现为所在大陆板块的张力,能量形式则是弹性势能。干旱的时间越长,则能量聚集量越大。当潮湿的空气运动到这一地区时,由于雨水的湿润,大地又重新成为较好的导体,地表积聚的大量电荷迅速向尖端地带运动,于是倾盆大雨,伴随着大量的闪电,能量迅速释放,造成大陆板块的异常运动。这种能量释放对于地球来说微不足道,但是对于人类来说则破坏力巨大。

可以由这个模型得知,地表植被不断减少是全球气候异常的主要推动力之一,在地表温度缓慢上升的同时,各类异常天气现象也日益频繁发生,其中有着复杂的相互作用,需要更多更详尽的数据,如大气、洋流、地质等多方面,这个模型可以作为地球物理学的基本模型。具体问题具体分析,还可以推广至其他天体、星系。

化石能源的大量使用,一方面是造成温室气体的排放,另外一方面则是大量酸雨使得植被减少,双重作用使气候异常加剧。

海洋变化

讲气候变化,海平面上升是很吸引眼球的新闻。其实大海并不是一个平面,海洋不同地方的海平面高度并不都是相同的,不同的大洋之间的海洋高度能相差不少。人类关心的,观测到的,实际上是沿岸的海平面。影响沿岸海平面变化的因素非常多,比如潮汐、天气,比如气候变化,还有陆地本身的上升、下降等等,当然不同的因素有不同的时间尺度。

人类对沿岸海平面变化的观测很早,当然早期资料的代表性普遍不足。地中海的资料比较好一些,观测到从公元1世纪到1900年的漫长时间里面,地中海的海平面变化幅度没有超过正负25厘米,或者说基本上是稳定的;这期间地中海的海平面升降的变化速率,基本上都在每年0到2毫米之间。进入近代以后,19世纪后半期,世界各大洋面都有了观潮仪,这样就有了对所有大洋洋面高度的监测数据。这些历史数据里面能发现明显的海平面加速上升的趋势,但是数据还不足以作定量分析。全面系统的观潮仪的数据记录是从1961年开始的,观察到1961年到2003年间,全球海平面上升的平均速度是每年1.8+-0.5毫米,这期间海平面并不是一个单纯的升高,而是有的年头升高,有的年头降低。更加全面的海平面数据是从1993年卫星进行测量开始的,理论上卫星观测可以得到最直接的海平面观测数据。卫星观测到1993年到2003年间,全球海平面上升速度是每年3.1+-0.7毫米,速度明显比此前加快。但是这个加快仅仅是短期变化,还是有长期趋势,还不好下结论。从观潮仪的记录来看,1993年到2003年的海平面上升速度在1950年代以后就曾经发生过,并不具有唯一性。

和很多气候问题一样,尽管全球海平面呈现了整体的升高趋势,但是各个大洋的海平面变化各有不同。观察到从1992年以来,最大的海平面上升发生在太平洋西部和印度洋东部,整个大西洋的海平面除了北大西洋部分地区外基本上在上升,但是在太平洋东部部分地区和印度洋西部,海平面实际上在下降。有兴趣的可以关注一下几个嚷嚷得很厉害的小岛国的位置,看看对他们来讲,问题究竟是不是真的存在,是不是真得很迫切。不同的岛国,情况还是很不同的。

原因分析

人为因素

1.人口剧增因素

人口的剧增是导致全球变暖的主要因素之一。同时,这也严重地威胁着自然生态环境间的平衡。这样多的人口,每年仅自身排放的二氧化碳量就将是一惊人的数字,其结果就将直接导致大气中二氧化碳的含量不断地增加,这样形成的二氧化碳温室效应将直接影响着地球表面气候变化。

2.大气环境污染因素

环境污染的日趋严重已构成一全球性重大问题,同时也是导致全球变暖的主要因素之一。21世纪,关于全球气候变化的研究已经明确指出了自上个世纪末起地球表面的温度就已经开始上升。

3.海洋生态环境恶化因素

海平面的变化是呈不断地上升趋势,根据有关专家的预测到下个世纪中叶,海平面可能升高50cm。如不取及对措施,将直接导致淡水的破坏和污染等不良后果。另外,陆地活动场所产生的大量有毒性化学废料和固体废物等不断地排入海洋;发生在海水中的重大泄(漏)油等以及由人类活动而引发的沿海地区生态环境的破坏等都是导致海水生态环境遭破坏的主要因素。

4.土地遭破坏因素

造成土壤侵蚀和沙漠化的主要原因是不适当的农业生产。众所周知,良好的植被能防止水土流失。但到当前2014年,人类活动由于为获取木材而过度砍伐森林、开垦土地用于农业生产以及过度放牧等原因,仍在对植被进行着严重的破坏。土地沙化,4.7万吨土壤被侵蚀。土壤侵蚀使土壤肥力和保水性下降,从而降低土壤的生物生产力及其保持生产力的能力;并可能造成大范围洪涝灾害和沙尘暴,给社会造成重大经济损失,并恶化生态环境。

5.森林锐减因素

在世界范围内,由于受自然或人为的因素而造成森林面积正在大幅度地锐减。

6.酸雨危害因素

酸雨给生态环境所带来的影响已越来越受到全世界的关注。酸雨能毁坏森林,酸化湖泊,危及生物等。20世纪,世界上酸雨多集中在欧洲和北美洲,多数酸雨发生在发达国家,一些发展中国家,酸雨也在迅速发生、发展。

7.物种加速灭绝因素

地球上的生物是人类的一项宝贵,而生物的多样性是人类赖以生存和发展的基础。但是地球上的生物物种正在以前所未有的速度消失。

8.水污染因素

据全球环境监测系统水质监测项目表明,全球大约有10%的监测河水受到污染,本世纪以来,人类的用水量正在急剧地增加,同时水污染规模也正在不断地扩大,这就形成了新鲜淡水的供与需的一对矛盾。由此可见,水污染的处理将是非常地迫切和重要。

9.有毒废料污染因素

不断增长的有毒化学品不仅对人类的生存构成严重的威胁,而且对地球表面的生态环境也将带来危害。

自然因素

1.火山活动

2.地球周期性公转轨迹变动

地球周期性公转轨迹由椭圆形变为圆形轨迹,距离太阳更近。根据某科学家的研究地球的温度曾经出现过高温和低温的交替,是有一定的规律性的。

关于数学的幽默小故事大全

数学趣味小故事 1、蝴蝶效应 气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?」论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。Lorenz为何要写这篇论文呢? 这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。 这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果。当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。在一小时后,结果出来了,不过令他目瞪口呆。结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。所以长期的准确预测天气是不可能的。

参考资料:

阿草的葫芦(下册)——远哲科学教育基金会 2、动物中的数学“天才” 蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。 丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”? 蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。 冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。 真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。(生活时报) 3、麦比乌斯带 每一张纸均有两个面和封闭曲线状的棱(edge),如果有一张纸它有一条棱而且只有一个面,使得一只蚂蚁能够不越过棱就可从纸上的任何一点到达其他任何一点,这有可能吗?事实上是可能的只要把一条纸带半扭转,再把两头贴上就行了。这是德国数学家麦比乌斯(M?bius.A.F 1790-1868)在1858年发现的,自此以后那种带就以他的名字命名,称为麦比乌斯带。有了这种玩具使得一支数学的分支拓朴学得以蓬勃发展。 4、数学家的遗嘱 阿拉伯数学家花拉子密的遗嘱,当时他的妻子正怀着他们的第一胎小孩。“如果我亲爱的妻子帮我生个儿子,我的儿子将继承三分之二的遗产,我的妻子将得三分之一;如果是生女的,我的妻子将继承三分之二的遗产,我的女儿将得三分之一。”。 而不幸的是,在孩子出生前,这位数学家就去世了。之后,发生的事更困扰大家,他的妻子帮他生了一对龙凤胎,而问题就发生在他的遗嘱内容。 如何遵照数学家的遗嘱,将遗产分给他的妻子、儿子、女儿呢? 5、火柴游戏 一个最普通的火柴游戏就是两人一起玩,先置若干支火柴於桌上,两人轮流取,每次所取的数目可先作一些限制,规定取走最后一根火柴者获胜。 规则一:若限制每次所取的火柴数目最少一根,最多三根,则如何玩才可致胜? 例如:桌面上有n=15根火柴,甲、乙两人轮流取,甲先取,则甲应如何取才能致胜? 为了要取得最后一根,甲必须最后留下零根火柴给乙,故在最后一步之前的轮取中,甲不能留下1根或2根或3根,否则乙就可以全部取走而获胜。如果留下4根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的火柴而赢了游戏。同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取后留下4根火柴,最后也一定是甲获胜。由上之分析可知,甲只要使得桌面上的火柴数为4、8、12、16...等让乙去取,则甲必稳操胜券。因此若原先桌面上的火柴数为15,则甲应取3根。(∵15-3=12)若原先桌面上的火柴数为18呢?则甲应先取2根(∵18-2=16)。 规则二:限制每次所取的火柴数目为1至4根,则又如何致胜? 原则:若甲先取,则甲每次取时,须留5的倍数的火柴给乙去取。 通则:有n支火柴,每次可取1至k支,则甲每次取后所留的火柴数目必须为k+1之倍数。 规则三:限制每次所取的火柴数目不是连续的数,而是一些不连续的数,如1、3、7,则又该如何玩法? 分析:1、3、7均为奇数,由於目标为0,而0为偶数,所以先取者甲,须使桌上的火柴数为偶数,因为乙在偶数的火柴数中,不可能再取去1、3、7根火柴后获得0,但使如此也不能保证甲必赢,因为甲对於火柴数的奇或偶,也是无法依照己意来控制的。因为〔偶-奇=奇,奇-奇=偶〕,所以每次取后,桌上的火柴数奇偶相反。若开始时是奇数,如17,甲先取,则不论甲取多少(1或3或7),剩下的便是偶数,乙随后又把偶数变成奇数,甲又把奇数回覆到偶数,最后甲是注定为赢家;反之,若开始时为偶数,则甲注定会输。 通则:开局是奇数,先取者必胜;反之,若开局为偶数,则先取者会输。 规则四:限制每次所取的火柴数是1或4(一个奇数,一个偶数)。 分析:如前规则二,若甲先取,则甲每次取时留5的倍数的火柴给乙去取,则甲必胜。此外,若甲留给乙取的火柴数为5之倍数加2时,甲也可赢得游戏,因为玩的时候可以控制每轮所取的火柴数为5(若乙取1,甲则取4;若乙取4,则甲取1),最后剩下2根,那时乙只能取1,甲便可取得最后一根而获胜。 通则:若甲先取,则甲每次取时所留火柴数为5之倍数或5的倍数加2。  趣味数学——智算酒坛 [ 2008-12-15 15:28:00 | by: 李绍刚 ]

北宋的一个夜晚,一家小酒店的老板正和伙计一起堆酒坛。因为近来生意特别好,酒坛自然也就多。老板一边在心里乐,一边盘算着如何发更大的财。他要把酒坛堆得整整齐齐,美观大方,吸引更多的顾客光临酒店。 酒坛堆得非常漂亮,一层一层整整齐齐。酒店门口的招幌迎风飘扬,使人不得不驻足逗留,忍不住想进店喝几盅。酒店老板得意扬扬之际,想数数酒坛一共有多少只。可是,数坛子也并不轻松,老板从前面绕到后面,又从后面绕到前面,刚刚擦干的汗水又冒出来了,伙计们都笑了 第二天。这堆酒坛果然吸引了不少顾客,老板望着酒坛,乐不可支。这时,一位衣冠楚楚的青年书生走了过来,面对酒坛,若有所思。老板心想:我昨天为了数清这堆酒坛,花了很大的功夫,这位青年相貌不凡,我倒要考考他看。 "年轻人,你知道这堆酒坛一共有多少个吗?"老板半开玩笑地问道。 "这很容易,只要你告诉我这堆酒坛最上面的那层一共几排,每排多少个,一共有几层。根本不用数,我马上就知道这堆酒坛的数目。"年轻人这么说话,显然有十足的把握。 "噢!"老板心想:这位年轻人真会说大话,不妨把他提的条件告诉他,看看他的能耐到底有多大。于是老板爽快地说: "最上面那层酒坛是四排,每排8个,第二层是五排,每排9个……" "好了,一共七层,"年轻人打断了老板的话,不加思索地报出了答案,"一共567个酒坛。对吗?" 老板一下子惊得连张开的嘴巴也忘记合拢了。这么快!老板马上把年轻人请进酒店,上茶,敬酒,招待得万分周到。老板真是打心眼佩服这位青年,又是请教姓名,又是讨教数坛的方法。 这位青年就叫沈括。优越的家庭生活条件使他有机会读书,加上他好奇心强,肯钻研,于是他就成了很有才学的人。沈括回答老板说:"我数这坛子的方法其实非常简单,因为最中间那层共77个,共七层,只要再乘7,最后加上常数28就行了。" 沈括从小对筹算很感兴趣,读了许多数学名著。后来自己写成了一本数学专著《隙积术》,专门研究高阶等差级数的求和问题。沈括数坛的方法就是利用了高阶等差级数求和的方法,要比单纯地数方便多了。数学上还可能碰到数字更大,项数更多的题目,用这种方法便可一下子迎刃而解。

1、两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里? 答案 每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。 许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰?冯·诺伊曼(John von Neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去用无穷级数求和的复杂方法。 冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法.”他解释道 2、 有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!” 正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。 在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。 如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候? 答案 由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。 既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。 这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑. 3、一架飞机从A城飞往B城,然后返回A城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。设沿着从A城到B城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响? 怀特先生论证道:“这股风根本不会影响平均地速。在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,如风速是每小时l00英里。飞机将以每小时200英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗? 答案 怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。 怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。 逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。 风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。 4、《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下:令有雉(鸡)兔同笼,上有三十五头,下有九十四足。 问雄、兔各几何? 原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是用了方程的方法。 设x为雉数,y为兔数,则有 x+y=b, 2x+4y=a 解之得 y=b/2-a, x=a-(b/2-a) 根据这组公式很容易得出原题的答案:兔12只,雉22只。 5、我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。 经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。 问题:我们该如何定价才能赚最多的钱? 答案:日租金360元。 虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。 当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。 宋代大诗人苏东坡年轻时与几个学友进京考试.他们到达试院时为时已晚.考官说我出一联,你们若对得上,我就让你们进考场.考官的上联是一叶孤舟,坐了二三个学子,启用四桨五帆,经过六滩七湾,历尽八颠九簸,可叹十分来迟. 苏东坡对出的下联是十年寒窗,进了九八家书院,抛却七情六欲,苦读五经四书,考了三番两次,今日一定要中. 考官与苏东坡都将一至十这十个数字嵌入对联中,将读书人的艰辛与刻苦情况描写得淋漓尽致. 学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里. 美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家.两星期后,她接到医院寄来的一张帐单,款数是63440美元.她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡.后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元. 点错一个小数点,竟要了一条人命.正如牛顿所说在数学中,最微小的误差也不能忽略. 世纪是计算年代的单位,一百年为一个世纪. 第一世纪的起始年和末尾年,分别是公元1年和公元100年.常见的错误是有人把起始年当作是公元零年,这显然不符合逻辑和我们的习惯,因为在一般情况下,序数的计算是从1开始的,而不是从0开始的。而正是这个理解上的错误,所以才导致了世纪末尾年为公元99年的错误认识,这也是错把1999年当作是二十世纪末尾年,错把2000年当作是二十一世纪起始年的原因.因为公元计数是序数,所以应该从1开始,21世纪的第一年是2001年. 一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说请大家把这些小针往这张白纸上随便仍吧1客人们按他说的做了。 蒲丰的统计结果是大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142。蒲丰说这个数是π的近似值。每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确。这就是著名的蒲丰试。 1981年的一个夏日,在印度举行了一场心算比赛。表演者是印度的一位37岁的妇女,她的名字叫沙贡塔娜。当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛。 工作人员写出一个201位的大数,让求这个数的23次方根。运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案。而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多。 这一奇闻,在国际上引起了轰动,沙贡塔娜被称为数学魔术家。 华罗庚出生于江苏省,从小喜欢数学,而且非常聪明。1930年,19岁的华罗庚到清华大学读书。华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。他对数论有很深的研究,得出了著名的华氏定理。他特别注意理论联系实际,走遍了20多个盛市、自治区,动员群众把优选法用于农业生产。 记者在一次访时问他你最大的愿望是什么? 他不加思索地回答工作到最后一天。他的确为科学辛劳工作的最后一天,实现了自己的诺言。 数字趣联 宋代大诗人苏东坡年轻时与几个学友进京考试.他们到达试院时为时已晚.考官说:"我出一联,你们若对得上,我就让你们进考场."考官的上联是:一叶孤舟,坐了二三个学子,启用四桨五帆,经过六滩七湾,历尽八颠九簸,可叹十分来迟. 苏东坡对出的下联是:十年寒窗,进了九八家书院,抛却七情六欲,苦读五经四书,考了三番两次,今日一定要中. 考官与苏东坡都将一至十这十个数字嵌入对联中,将读书人的艰辛与刻苦情况描写得淋漓尽致. 点错的小数点 学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里. 美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家.两星期后,她接到医院寄来的一张帐单,款数是63440美元.她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡.后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元. 点错一个小数点,竟要了一条人命.正如牛顿所说:"在数学中,最微小的误差也不能忽略. 二十一世纪从哪年开始? 世纪是计算年代的单位,一百年为一个世纪. 第一世纪的起始年和末尾年,分别是公元1年和公元100年.常见的错误是有人把起始年当作是公元零年,这显然不符合逻辑和我们的习惯,因为在一般情况下,序数的计算是从“1”开始的,而不是从“0”开始的。而正是这个理解上的错误,所以才导致了世纪末尾年为公元99年的错误认识,这也是错把1999年当作是二十世纪末尾年,错把2000年当作是二十一世纪起始年的原因.因为公元计数是序数,所以应该从“1”开始,21世纪的第一年是2001年. 蒲丰试验 一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了。 蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142。蒲丰说:“这个数是π的近似值。每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确。”这就是著名的“蒲丰试验”。 数学魔术家 1981年的一个夏日,在印度举行了一场心算比赛。表演者是印度的一位37岁的妇女,她的名字叫沙贡塔娜。当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛。 工作人员写出一个201位的大数,让求这个数的23次方根。运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案。而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多。 这一奇闻,在国际上引起了轰动,沙贡塔娜被称为“数学魔术家”。 工作到最后一天的华罗庚 华罗庚出生于江苏省,从小喜欢数学,而且非常聪明。1930年,19岁的华罗庚到清华大学读书。华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。他对数论有很深的研究,得出了著名的华氏定理。他特别注意理论联系实际,走遍了20多个省、市、自治区,动员群众把优选法用于农业生产。 记者在一次访时问他:“你最大的愿望是什么?” 他不加思索地回答:“工作到最后一天。”他的确为科学辛劳工作的最后一天,实现了自己的诺言。

数学与人类时空观

人类对时空认识的探讨

摘要:人类对时空的认识经历了一个漫长、复杂和曲折的过程,在远古时代人们认为天方地圆,后来有了牛顿的绝对时空观,又有了爱因斯坦的相对论时空观,建立了在混沌分形理论基础上的时空观,近年又出现了在“光速改变”(VSL)理论基础上的新时空观,而建立在“超弦理论”基础上的多维时空更让人感到人类对时空的认识是一个永无止境又难以定论的话题。

关键词:天方地圆 绝对时空 相对时空 混沌分形 光速改变 超弦理论 多维时空

物理学和现代高科技经过百年的飞速发展,人类已经进入了一个全新的时代。但是物理学仍然面临许多迫切需要解决的问题,爱因斯坦终生没有解决的统一理论至今没有解决,另外弦理论还需要完善,宇宙大爆炸学说对普朗克时间[宇宙诞生的0.(42个零)1秒前]和黑洞的无奈,还有一些重大物理实验和所观察的现象无法用现有理论进行解读。伴随着新世纪到来物理学所面对的也和百年前一样是层层迷雾,超越爱因斯坦理论的物理学理论有可能出现。人类对时空的认识是一部不断发现、纠正、完善和挑战前人理论成果的科学。下面笔者从天方地圆的平直时空观到爱因斯坦相对论时空观,以及建立在超弦理论基础上的多维时空理论进行简介和探讨如下。

一、古老“天圆地方”的平直时空观

人类至产生以来,就可望对自己生存的环境有一定的了解,对时空观念有一个初步的印象。在中国上古神话中就有开天,清则上升为天。浊则下沉为地之说,他们认为天方地圆。因大神共工撞倒不周山撑天柱,所以天倾西北,地倾东南,则有日月星晨从东方升起,西方降落。人类从产生时起就不断地研究时间和空间的问题。人类为了生存和发展,要了解宇宙,了解天气的变化,想知道风雨雪雷电是怎样产生的,一年四季如何变化,何时播种,何时收获。天与地本来是个巨大的空间,激发了我们的无限的想象和兴趣,可在封建社会,人们一直认为他们生活的在绝对平面上,地球是平的。有人称之这一时期宇宙定律为毕达哥拉斯定理(国人称之为勾股定理),既a2+b2 = c2,“毕达哥斯拉定理不仅在数学上的美是合理的,同时通过近代对它的研究还产生了著名的费马定理。费马定理在上个世纪80年代和90年代才被证明。 a2+b2 = c2不仅具有几何的美,更反映了人类对时间和空间的美的认识。它是一种平面思维的时空观。是人类认识自然的第一个重大的完美的定理。”(转至朱伟勇 朱海松《热抽象》P7)

近代由于航海发达等因素,人们看到远处出现的船不是简单的由小到大,而是好像从远处海平面以下钻出来一样,于是人们开始对海平面是否真的平,地球是否真是无限大的平面开始的怀疑,由于对地球形状的各种猜测,其中毕达哥达斯从球形是最完美的几何体的观点出发,认为大地是球形的,太阳、月亮和行星作匀速圆周运动思想。他认为地球沿着一个球面围绕着空间一个固定的“中央火”转动,另一侧有一个“对地星”与之平衡。这个“中央火”是人类永远看不见的。他认为天上发光体必然有十个,这十个天体到中央火之间的距离同音节之间有同样的比例关系,以保持星球的和谐,从而奏出天体的音乐。这使人想起了目前的超弦理论。(参考朱伟勇 朱海松《热抽象》P5)。

二、以“经典力学”为理论基础的绝对时空观

希腊人用几何方法来解释行星的运动,公元2世纪时出现的托勒密地心体系就是这些学说的代表。这个体系统治了十四个世纪之久,直到16世纪哥白尼日心体系的出现,到了17世纪以惯性系为基础的伽利略相对性原理的出现。于是有了以牛顿三大运动定律和万有引力定律为基础的经典力学的建立,也有了以经典力学为基础的绝对时空观念。牛顿认为绝对真实的数学时间,就其本质而言,是永远均匀地流逝,与任何外界无关。绝对空间就其本质而言是与任何外界无关的,它从不运动,并且永远不变。认为空间是立体的,OX、OY、OZ构成三维立体的空间,而且他把空间和时间分割开来,空间对时间没有明确定义,而是一个自然流动的均匀变化轴。经典时空认为同时的绝对性,时间间隔的绝对性,空间距离的绝对性,质量的不变性。所以时间、长度和质量这三个基本物理量在经典力学中都与参考系(观察者)的运动无关。

3.以“光速不变”为理论基础上的相对论时空观

1905年,爱因斯坦连续发表了5篇文章中,狭义相对论彻底改变了人们的时空观念。根据这一理论,“时间或空间因时因地而异,会发生膨胀或收缴”。后来这个理论发展成为一种用来解释宇宙现象的引力理论,既广义相对论。狭义相对论两条基本设是:一是相对性原理。在不同的惯性参考系中,一切物理规律都是相同的;二是光速不变原理,不管是有哪个惯性参考系中,测得真空中的光速都相同。

关于“同时的相对性原理”的说明要从“爱因斯坦的奶牛梦”说起,爱因斯坦在青少年时做了一个很特别的梦,其梦境如下,在一个风景如画的牧场上有许多奶牛在带电的栅栏附近懒散的吃着草。当农夫给栅栏通上电时,农夫看到三头牛依次跳起来,而站在对面的爱因斯坦却看到三头牛一起跳起来。(参考《比光速还快》/P11---P8/乔奥.马古悠(Jo?o Magueijo)著)那么在以上现象中,农夫和爱因斯坦谁错了?答案是谁都没错,这就是相对性原理。如图1所示,当在A位置的农夫合上电源开关起,电流以光速向奶牛的方向运动,当B牛受到电击跳起的景象回到农夫眼前所用总的时间为: 其中C为光速,同理农夫看到C位置的牛跳起距开关合上的时间为: ;农夫看到D位置的牛跳起距开关合上的时间为 。由于三头牛距农夫的距离不同,所以对农夫来说三头并不是同时跳起的。对于在农夫对面的观察者E来说,由于光和电传播的速度相同,因此,他看到的是三头牛同时跳起,对于同一类,由于观察者的位置不同,看到的其发生的时间是不同的,这就是相对性原理。爱因斯坦认为宇宙中不会有绝对静止的场所,从而否定了牛顿的绝对坐标,他认为任何惯性系(静止或匀速运动的系统)都与静止场所(坐标)没有区别。这就是狭义相对论的基础之一“相对性原理”。而狭义相对论的另一个基础就是“光速不变原理”,既使观测者或光源在移动,光对于观测者总是以每秒30万千米的速度行进。

相对论一个核心问题就是认为时间并不是绝对的,高速运动(接近光速)的物体,时间流速变慢,用公式 表示。其基本原理如图2所示,若飞船以接近光速向前飞行,在飞船中有一束光由A射向B,根据相对性原理,在飞行过程中,飞船上的人观测到的光运动的时间为: ,既相对于飞船上的观测者光走的是直线;而在飞船外看到飞船运动的观测者来说,这条光线是由A射向D,光线运动所用的时间是: ;显然由于SAD?SAB=SCD,则有t2?t1,也就是说对于飞船外的观测者来说,相对于飞船内的观测者,光线运动的时间变长了。

相对论的另一个核心问题是认为高速运动物体(接近光速),空间(长度)将发生收缩。用公式 表示。其基本原理如图3所示,在A处的观测者首先看到飞船的船头C,而此时的船尾在E处,当观测者的目光看到船尾时,船尾已经运动到了D点,而此时船头运动到了C点,这样对观测者来说,他看到的飞船长度只是SCD长度,而不是飞船的原来SCE的长度,飞船在运动方向上被压缩了。

狭义相对论的一个令惊奇的预言就是宇宙间任何物体运动都有一个速度上限,这个上限就是光速。也就是说无论用多么先进和技术对物体怎样加速,物体的速度都不可能超过光速,物体被加速时,其质量增大,所以物体越接近光速,加速就越困难,根据公式 可知,要想使物体达到光速几乎是不可能的。这一点我们仅通过光子在运动时有质量,在静止时没有质量就可见一斑。质量和能量是一会事,用公式 ,既用很小的质量转化为非常大的能量,这也是狭义相对论的一个关键点。

综上所述爱因斯坦关于同时的相对性、运动的时钟变慢、运动的空间收缩和运动的质量变大这四个观点已经彻底颠覆了牛顿的绝对时空观念。而爱因斯坦在把狭义相对论加以发展,将引力也纳入考虑之中建立起来的广义相对论引入的四个原理让我们对时空有了新的认识。其广义相对性原理如下:一是等效原理既在加速运动的场所观测出现的惯性力在本质上与引力没有区别,如在下落的箱子中,引力被惯性力完全抵消,引力滑失,这就是等效原理。二是引力使光线弯曲,因为光在运动时有质量,所以也受到万有引力作用,因此光线在地球或太阳附近发生了弯曲,这可以通过日全食时对隐藏在太阳后面星体的观测得到证明。黑洞也是光线弯曲或受到引力作用的一个证明。三是引力使空间发生弯曲,质量大的天体使光线弯曲,光在空间弯曲的部分也是直线行进,其结果就是在大质量的天体附近空间发生了弯曲,或者说整个宇宙是一个卷曲的空间。四是引力使时间流动变慢,引力越强,时间流动的越慢,在引力特别强的黑洞附近的天体,离它越近,时间流动越慢。如果行进到黑洞视界,时间甚到会停止。与狭义相对论不同的是,在引力强的地点,时间流动不是相对变慢,而是必然变慢,这一点在全球定位系统的运行中,已经得到了证明,且科学家们如果不去修正由于引力变化引起的时钟效益,卫星系统定位就不会在准确了。

四、以“混沌分形”为理论基础上的新时空观

自然界中大部分不是有序的,平衡的,而是处于无序的、非平衡的和随机的状态之中,它存在着无数的无序状态。在非线性世界里随机性和复杂性是其主要特征。但在表现之下还存在着某种自然规律。混沌分形理论以新的手段来处理这些难题,透过扑朔迷离的无序混乱现象和不规则形态,提示隐匿在复杂系统内部的规律,以及局部和整体之间的联系。

大物理学家约翰?惠勒(黑洞的命名者)说过,将来一个人如果不能熟悉混沌与分形,他就不能被认为是科学上的文化人。分形理论是美国科学家曼德勃罗(B?B?Mandel brot)15年第一次提出“分形Fractal” 作为一个集合提出来的。分形理论的建立和迅速发展,涉及到几乎整个自然科学和社会科学。分形从字面上来说,分形是极其零碎而复杂的,但又有自相似和自仿性,它们在自然界中普遍存在。如变幻莫测的云彩、雄浑壮阔的地貌、弯转曲折的海岸线、生物神经网络、不断分叉的树枝、江河及支流的走向网络等等。面对这些事物与现象,传统科学显得束手无策,而分形理论却大显身手,成为研究这些复杂事物的有力武器。所谓分形最简单的例子就是一棵树,如折其一主干、分枝、小杈,你会发现它们会有惊人的相似之处,小树杈很像大树的模型,大树又像小树的放大;又如江河的三角洲的相似之处,我们可以从地图上、飞机上、地面上看到从大到江河、小到小溪及细流,其分支形态与三角地带的几何形状成有很多相似之处;又如人体从大到动脉、静脉、小到毛细血管、其走向和分支形态都有同样的相似之处,这就是大自然让我们见到的分形理论。我国的一句名言“齐家、治国、平天下”是说一个人如果能治理好一个家庭,就能治理国家,也能平天下,这是分形理论在社会学上的体现;而“一叶知秋、一芽知春”也是分形理论的早期应用。就连《三国演义》的开篇“话说天下大势,合久必分,分久必合”也是分形理论在历史发展中的应用。综上所述,分形理论是我们对时空观的一次重新的认识。

关于混沌的探索早在二十世纪初许多科学家在研究三体问题中就提出来了,我们知道运用牛顿力学很容易计算出二体运动的轨道,而太阳、地球、月球这三个天体之间共同的运动规律到现在还没有很好的解释,这就是所谓三体问题,也是混沌问题研究的一个重要开始。因为在这个问题中包含许多我们认识自然界的基本的、原始的、直觉的、创新的东西在里面。这需要新思维、新理念、新方法、新理论。在这种历史背景下,人类从新认识自然和时空的理论混沌学出现了。“蝴蠂效应”作为研究混沌问题的著名例子,已经成为许多了解混沌学的一个窗口。“蝴蠂效应”是说明在已经建立的轨道上,在微小的干扰下,运动轨道会发生巨大的变化。为了描述混沌的复杂性系统的极端敏感性,洛沦兹打了个比喻,在南半球某地一只蝴蝶的偶然扇动翅膀所引起的小气流,几个星期后可能变成席卷北半球的一场龙卷风。“十月革命的一声炮响,给中国传来了”就是引起中国革命和世界社会主义革命的“蝴蠂效应”。而一棵马蹄钉跌倒一个王子,一个王子输掉了一场战争、一场战争失掉了一个王国,同时也改变了整个世界,这就是历史发展中的“蝴蠂效应”。混沌学研究的是无序中的有序,许多现象既使遵循严格的确定性的规律,但大体上仍然是无法预测的,混沌在不同的时间标度下表现的相似的变化模式,这与分形在空间标度下表现的相似性十分相似,混沌主要讨论非线性动力系统的不稳、发散的过程,但系统在相空间总是收敛于一定的吸引子,这与分形的生成过程十分相似。混沌学与分形理论在很大程度上依赖于计算机的进步,并向传统的数学提出了全新的挑战。由于混沌理论的不确定性,和未来的不可预测性和无序中的有序,难免让人想起中国的易经、外国的星象术和一些宗教活动及预测等是否可以归纳为人们经过几千年的探索所解决问题的一种混沌现象呢?而在扑朔迷离的宇宙学中,人们只想用现有普遍的规律解释所观测到的天文现象,而最新的研究在宇宙中有许多我们不可知和难以解释的现象,如2003年10月美国加州理工学院迈克.?布朗(Mike Brown)等科学家发现的新天体能否算做太阳系的第十大行星,在海王星外为什会有大角度倾角轨道天体,在海王星外发现的大约1000多棵行星运动有什么样的规律,在宇宙学中还多少现象也许只能用混沌和分形理论去探索和解释。

五、建立在“光速改变”(VSL)新理论基础上的时空观

伴随着新世纪到来,物理学所面对的也和百年前一样是层层迷雾,超越爱因斯坦学说的物理学理论有可能出现。而剑桥大学理论物理学博士乔奥.马古悠(Jo?o Magueijo)提出的VSL理论(varying speed of light “光速改变”理论)是近年来出现的解读宇宙寘实本质的一个不凡的疯狂点子,因为他向爱因斯坦理论的核心发起了挑战。VSL理论是:光速在早期宇宙比现在快,这么设的话,至少部分宇宙问题不需要暴胀理论就可以解释,事实上在运用光速改变理论解决宇宙之谜时,宇宙几乎在告诉我们,光在以前行进得较快,而最基本的物理学理论似乎必须构建在比相对论更宽的结构上。让人兴奋的是近期澳大利亚国立大学的物理学家们利用稀土元素镨的硅酸晶体,制造出一个“超级光陷阱”。成功将光束“冻住”一秒钟,既然光束能被冻住,那不就是从实验否定了光速是不可改变的理论,证明光速是可以改变的。 按VSL理论里,光速不仅会随宇宙演化而变化,也会在不同空间发生变化,在接近行星与恒星时,这种效应几乎察觉不到,但是靠近黑洞时会有更剧烈的事清发生,研究方程表明,在视界时光速本身可能变为零。根据保守的VSL理论,如同狭义相对论里,光速应是个速限,只是可能会随地点不同而相异,你的速度永远必须比当地的C小,所以当速度极限降到零时,你将遇上终极红灯,你必须停在VSL黑洞的视界前。在悬崖边,你的自杀企图将初被阻止。VSL黑洞会封闭防止灾难。无论我们如何定义时间,这些时钟在靠近黑洞时会滴答的不一样,然而生物过程本身便具有电磁本质,也就是说人们老化的速度事实上便是极佳的电子时钟。我们发现在接近黑洞时,我们会老化的更快,不是因为爱因斯坦所说的时间延滞效应所造成,而是因为电磁作用的发生速度更快所致。因此当我们接近一个VSL黑洞时,心跳会加速,老化也会更快,或者倒过来说,当我们以自己生命的步调来测量,会看到自己朝向视界的运动变慢了。也就是说,就我们来看,接近视界要花上永恒的时间,然而若是C维持恒常,则可能只有一秒闪过而已。在VSL之下,视界更近,但是也是更难达到。VSL黑洞的视界就像是无穷远的目标,像太空无法触及的边缘,界限之后存在着奇妙的永恒。

VSL理论更惊人的理论意义在于当C可能在时间我空间里改变之后,又可能出现一个“快速道路”,建立在VSL场理论和宇宙弦的形式出现,沿着这些弦的方向光速可能会更高,在靠近弦之处的光速会变得更大,仿佛是一个超光速覆盖包含宇宙弦,这会创造一个走廊,具有一个极端高的速度极限延伸到宇宙,而这正是太空旅行所企求的一条快车道。但这甚至比快车道更好!沿VSL宇宙弦,时间仍然延滞效应,但是唯有当旅行者的速度相比于光速时(在这个理论里意味关C当地值),这种效应才会变得明显,既然沿着一个VSL宇宙弦时,C值可能会更高,所以可能在已经是很高的速度移动时,却仍然比C的当地值慢得多,因此时间延滞将可忽略。所以人类可以沿着快速道路超速移动,探索宇宙最遥远角落,但仍然比当地光速慢的多,他将能够避开“双子佯谬”的效应,在他返回时还是跟自己的孪生兄弟一般年纪。他不仅能够在有生之年拜访远方的星系,也可以在同代人有生之年返回家园。VSL理论将会改变我们对自己在宇宙中的看法,也会改变我们对于外星生命接触的期望。

六、建立在“超弦理论”基础上的多维时空

目前,有一新的理论认为,在亚原子的世界里,也就是在极度小的超微空间中的基本粒子不在是我现实中能够观察到的粒子,所谓基本粒子的存在只是一种微小振动的弦在微观世界的表现,这就象我们现实生活中看到的弦乐器中的一根普通的弦,它能奏出多种美妙的音乐。而在超微观世界中,正是有许多我们用现代任何仪器都无法观察到的弦的振动,形成一个丰富多彩的微观基本粒子大家庭。超弦理论认为世界是多维的,我们现在是生活在三维空间,或加上时间轴的四维时空中,而按其理论推导,应当还存在六维甚至是十维时空,让人不解的是,按照这种多维时空理论,通过数学的方法不难推导出爱因斯坦的狭义和广义相对论,相对论理论不再是天才的爱因斯坦的想为基础建立起来的理论,而是通过严谨的数学理论推导出来的结论。在建立弦理论基础的多维时空理论下,把宇宙中的四种基本的力(强相互作用、弱相互作用、电磁力和万有引力)得到了统一,困惑物理学界多年的大统一理论在这个多维的超时空理论基础上得到了完美的解决。超弦理论和多维时空理论虽然完美和令人着谜,由于需要巨大的人类近几个世纪都不可能获得的能量(1028电子伏,是我们现在加速器可获得最大能量的1015倍),因此,这种理论属人类似乎永远难以通过实验来验证的理论。这一理论能否长期存在下去也许就只有上帝才知道。

说到多维时空,我们不得不从一维世界讲起,这里我们如存在一个“直线国”,那里生活的人,他们每个人都生活在直线这样的一维时空里,他们只能生活在直线上,在他们的国度里根本没有平面这个概念,如有一天,有一个直线国的人突然离开了直线,于是在他们的国度里就很难理解,这个人为什么会突然消失,这对直线这个一维空间的人是不能理解的,这就是一维世界。二维世界应当只是一个平面,如有这样一个“平面国”,那生活在这个国度的人只有平面的概念,对他们我们完全可以画地为牢,只要你用笔画一个圈,他们就永远无法离开这个圈,因为在他们的世界里,根本就没有向上这个概念,如有一个球经过他们的世界,那他们也只能看到一个从小到大,又从大到小的圆,最后,变成一个点后消失,至于球从那里来,最后消失到什地方,那对他们来说是不可想象的。三维世界就是我们现在生活的世界,在这个世界里人们认为空间是绝对的,对于他们来说,四维是不可想象的,也是不存在的,这就象前面说过的牛顿绝对时空观,他把时间和空间割裂开来,认为空间是绝对的,时间是均匀流淌和永恒不变的。爱因斯坦打破了牛顿的绝对时空观,建立了空间,时间组成的四维时空,他认为时间和空间都是相对的。那么,存不存在五维时空呢?从数学的角度,早在十九世纪五十年代,德国数学家黎曼超越了欧几里几何学,提出了四维空间的概念,创造性的提出了一个全新的被后人称之为黎曼几何学,为统一物理学所有定律做好了理论准备。二十世纪,多维理论又一次成为科学界的热门话题,有科学家重新提出了多维时空的理念,并进行了有效的计算,值得一提的是爱因斯坦的相对论中美妙的质能方程,就是通过数学的早期弦理论推导出来的,这不得不让人感到大自然之奇妙。

近来,弦理论已经成为物理学界一个热门话题,物理学家们认为。宇宙中不但存在五维时空,还存在六维甚至是十维时空,在早期的宇宙中,处于一个绝对真空中的奇点,此时存在一个十维时空,但十维时空是不稳定的,于是产生了我们这个宇宙的创生,在宇宙创生时期,十维时空断裂为四维时空和六维时空,六维时空收缩为无限小的奇点,四维时空处于宇宙的大爆炸阶段,于是有了现在我们这个暴胀的宇宙,倡导十维时空学说的科学家们认为我们这个宇宙在爆炸中创生,将来会变成收缩中的宇宙,并再次收缩为一个奇点,然后在重复宇宙创生的一幕,这就是宇宙的未来。多维时空理论能够很好的把爱因斯坦终没能解决的大统一理论进行完美的解释,并统一了人类目前所认识的自然界的四种相互作用力。《时间简史》作者,物理学家霍金认为宇宙最终要用量子理论来解释,我们生活的这个宇宙是众多平行宇宙中的一个,对于宇宙就像是飘在空中的众多肥皂泡一样,每个肥皂泡都是一个宇宙,各个肥皂泡之间是没有任何联系的,这就是霍金近来提出的新的宇宙观,他认为我们只不过是生活在多维平行宇宙中的一个,如果有可能在两个宇宙之间打开一个洞,也就是所为的蛀洞,那么人类通过这个蛀洞就可以实现超越时空的旅行。

七、超越时空的外层空间的三类文明

在结束本文之前,让我们在了解一下前苏联天文学家卡尔谢夫(Nikolai Kardashev)曾经以下面方式对人类未来文明进行分类。他认为:一类文明控制了整个行星上的能源的那种文明。这种文明能够控制气候,阻止地震,在地壳中矿,以及在海洋中收割。这种文明已经完成了其在太阳系的探险。二类文明是控制太阳本身能量的文明,并不意味着被动地获取太阳能。这种文明可以开太阳能。这种文明的能量需求如此之巨大,它直接消耗太阳能量来驱动机器。这种文明将开始局部恒星系统的殖民化。三类文明是控制整个星系能量的文明。就能源而言,它控制数十亿个星系统的能量。它可能掌握了爱因斯坦方程组,能够随意操纵时空。也许这种对未来文明的分类是错误的,但他确实就能量方面对物理定律进行了合理的解释。我们人类科学技术进入高速发展只走过了短短的几百年的历史,目前,还没有具备第一类文明的条件,人类在距走进第一类文明还有许多的路要走,还有许多风险。如核危机,现在人类所储存的核武器已经足够毁灭几次地球上的现代文明,如某个人类狂人发动核战争,那地球将在核冬天中走向荒漠,也许今天的火星就是明天地球的命运。现在伴随着人类现代化进程的加快,人类生存环境变的越来越脆弱,而人口的爆炸式增长和现代建筑的增多,人类赖以生存的土地将越来越少,地球将成为钢筋水泥组成的城堡,环境污染、能源危机、自然灾害等诸多因素使这看似强大的人类将变得空前脆弱,任何人类预想到的或预想不到的、自然的、人为的突发都可能使这个蓝色星球处于极度危险之中甚至是毁灭。最后笔者衷心的祝愿人类能够珍惜环境、珍惜和平、珍惜大自然的和谐发展,祝愿人类平安的走向高明文明和高度现代化。

主要

参考资料:

1、《比光速还快》/乔奥.马古悠(Jo?o Magueijo)著/赵文译/湖南科学出版社/2005年5月/长沙

2、《热抽象》/朱伟勇 朱海松/广东经济出版社/2003年9月/广州

3、《在爱因斯坦的时空旅行》/J.Richard Gott著/刘军译/长春出版社/2004年1月/长春

4、《超越时空》/加来道雄/刘玉玺 曹志良/上海科技教育出版社/1999年5月/上海

5、《现代物理与高新技术》/何宝鹏/“广义相对论原理与应用”/张学荣/广东科技出版社/2000年1月/广州

数学论文怎么写六年级

六年级的数学论文,我们可以写一写生活中遇到的一些数学应用的地方,然后具体的数学公式、具体怎么使用的也写一些。可以看一看下面的这篇例文。

如:银行存款分:整存整取、零存整取、定期存款、活期、国债……这些存款形式各种各样,利率也有大有小,平时我们是这样计算利率的:本金× 利率×时间=所得利息,然后还要从利息里扣除20%来上税(除国债外)之后剩下的80%的利息就是你自己应得的利息了。大家想一想如果没有这些百分数帮忙,恐怕银行就要宣布破产了。

再说科学家们发明的种种东西,气象学家测量的天气情况……这些多要经过各项认真的思考和精密的计算才能获得正确的答案。哪怕不小心写错一个小数点也就前功尽弃了。还有常在天空翱翔的宇航员们他们要操作上百个由数字组成的仪表,如果稍有不慎那么结果就是机毁人亡。可见数学在我们生活中是不可缺少,不可马虎的,否则会造成严重的后果。

其实,只要我们用心去发现,用心去思考,那么你一定能学好数学的,因为数学就在我们身边。